74 research outputs found

    3D Cadastres Best Practices, Chapter 5: Visualization and New Opportunities

    Get PDF
    This paper proposes a discussion on opportunities offered by 3D visualization to improve the understanding and the analysis of cadastre data. It first introduce the rationale of having 3D visualization functionalities in the context of cadastre applications. Second the publication outline some basic concepts in 3D visualization. This section specially addresses the visualization pipeline as a driven classification schema to understand the steps leading to 3D visualization. In this section is also presented a brief review of current 3D standards and technologies. Next is proposed a summary of progress made in the last years in 3D cadastral visualization. For instance, user’s requirement, data and semiotics, and platforms are highlighted as main actions performed in the development of 3D cadastre visualization. This review could be perceived as an attempt to structure and emphasise the best practices in the domain of 3D cadastre visualization and as an inventory of issues that still need to be tackled. Finally, by providing a review on advances and trends in 3D visualization, the paper initiates a discussion and a critical analysis on the benefit of applying these new developments to cadastre domain. This final section discusses about enhancing 3D techniques as dynamic transparency and cutaway, 3D generalization, 3D visibility model, 3D annotation, 3D data and web platform, augmented reality, immersive virtual environment, 3D gaming, interaction techniques and time

    Morphology, ecology and biogeography of Stauroneis pachycephala P.T. Cleve (Bacillariophyta) and its transfer to the genusEnvekadea

    Get PDF
    Stauroneis pachycephala was described in 1881 from the Baakens River, Port Elizabeth, South Africa. Recently, it was found during surveys of the MacKenzie River (Victoria, Australia), the Florida Everglades (USA) and coastal marshes of Louisiana (USA). The morphology, ecology and geographic distribution of this species are described in this article. This naviculoid species is characterised by lanceolate valves with a gibbous centre, a sigmoid raphe, an axial area narrowing toward the valve ends, and capitate valve apices. The central area is a distinct stauros that is slightly widened near the valve margin. The raphe is straight and filiform, and the terminal raphe fissures are strongly deflected in opposite directions. Striae are fine and radiate in the middle of the valve, becoming parallel and eventually convergent toward the valve ends. The external surface of the valves and copulae is smooth and lacks ornamentation. We also examined the type material of S. pachycephala. Our observations show this species has morphological characteristics that fit within the genus Envekadea. Therefore, the transfer of S. pachycephala to Envekadea is proposed and a lectotype is designated

    Naked Singularity Formation In f(R) Gravity

    Full text link
    We study the gravitational collapse of a star with barotropic equation of state p=wρp=w\rho in the context of f(R)f({\mathcal R}) theories of gravity. Utilizing the metric formalism, we rewrite the field equations as those of Brans-Dicke theory with vanishing coupling parameter. By choosing the functionality of Ricci scalar as f(R)=αRmf({\mathcal R})=\alpha{\mathcal R}^{m}, we show that for an appropriate initial value of the energy density, if α\alpha and mm satisfy certain conditions, the resulting singularity would be naked, violating the cosmic censorship conjecture. These conditions are the ratio of the mass function to the area radius of the collapsing ball, negativity of the effective pressure, and the time behavior of the Kretschmann scalar. Also, as long as parameter α\alpha obeys certain conditions, the satisfaction of the weak energy condition is guaranteed by the collapsing configuration.Comment: 15 pages, 4 figures, to appear in GR

    Some exact solutions of F(R) gravity with charged (a)dS black hole interpretation

    Full text link
    In this paper we obtain topological static solutions of some kind of pure F(R)F(R) gravity. The present solutions are two kind: first type is uncharged solution which corresponds with the topological (a)dS Schwarzschild solution and second type has electric charge and is equivalent to the Einstein-Λ\Lambda-conformally invariant Maxwell solution. In other word, starting from pure gravity leads to (charged) Einstein-Λ\Lambda solutions which we interpreted them as (charged) (a)dS black hole solutions of pure F(R)F(R) gravity. Calculating the Ricci and Kreschmann scalars show that there is a curvature singularity at r=0r=0. We should note that the Kreschmann scalar of charged solutions goes to infinity as r→0r \rightarrow 0, but with a rate slower than that of uncharged solutions.Comment: 21 pages, 4 figures, generalization to higher dimensions, references adde

    Modified gravity and its reconstruction from the universe expansion history

    Get PDF
    We develop the reconstruction program for the number of modified gravities: scalar-tensor theory, f(R)f(R), F(G)F(G) and string-inspired, scalar-Gauss-Bonnet gravity. The known (classical) universe expansion history is used for the explicit and successful reconstruction of some versions (of special form or with specific potentials) from all above modified gravities. It is demonstrated that cosmological sequence of matter dominance, decceleration-acceleration transition and acceleration era may always emerge as cosmological solutions of such theory. Moreover, the late-time dark energy FRW universe may have the approximate or exact Λ\LambdaCDM form consistent with three years WMAP data. The principal possibility to extend this reconstruction scheme to include the radiation dominated era and inflation is briefly mentioned. Finally, it is indicated how even modified gravity which does not describe the matter-dominated epoch may have such a solution before acceleration era at the price of the introduction of compensating dark energy.Comment: LaTeX file, 24 pages, no figure, prepared for the proceedings of ERE 2006, minor correction

    Crossing the Phantom Divide Line in a DGP-Inspired F(R,ϕ)F(R,\phi)-Gravity

    Full text link
    We study possible crossing of the phantom divide line in a DGP-inspired F(R,ϕ)F(R,\phi) braneworld scenario where scalar field and curvature quintessence are treated in a unified framework. With some specific form of F(R,ϕ)F(R,\phi) and by adopting a suitable ansatz, we show that there are appropriate regions of the parameters space which account for late-time acceleration and admit crossing of the phantom divide line.Comment: 23 Pages, 10 figs, Submitted to JCA

    Non linear equation of state and effective phantom divide in brane models

    Full text link
    Here, DGP model of brane-gravity is analyzed and compared with the standard general relativity and Randall-Sundrum cases using non-linear equation of state. Phantom fluid is known to violate the weak energy condition. In this paper, it is found that this characteristic of phantom energy is affected drastically by the negative brane-tension λ\lambda of the RS-II model. It is found that in DGP model strong energy condition(SEC) is always violated and the universe accelerates only where as in RS-II model even SEC is not violated for 1<ρ/λ<21 < \rho/\lambda < 2 and the universe decelerates

    Energy Conditions in f(G)f(G) Modified Gravity with Non-minimal Coupling to Matter

    Full text link
    In this paper we study a model of modified gravity with non-minimal coupling between a general function of the Gauss-Bonnet invariant, f(G)f(G), and matter Lagrangian from the point of view of the energy conditions. Such model has been introduced in Ref. [21] for description of early inflation and late-time cosmic acceleration. We present the suitable energy conditions for the above mentioned model and then, we use the estimated values of the Hubble, deceleration and jerk parameters to apply the obtained energy conditions to the specific class of modified Gauss-Bonnet models.Comment: 12 pages, no figur, Accepted for publication in Astrophysics and Space Scienc

    Λ\LambdaCDM, Λ\LambdaDGP and extended phantom-like cosmologies

    Full text link
    In this paper we compare outcomes of some extended phantom-like cosmologies with each other and also with Λ\LambdaCDM\, and Λ\LambdaDGP. We focus on the variation of the luminosity distances, the age of the universe and the deceleration parameter versus the redshift in these scenarios. In a dynamical system approach, we show that the accelerating phase of the universe in the f(R)f(R)-DGP scenario is stable if one consider the \emph{curvature fluid} as a phantom scalar field in the equivalent scalar-tensor theory, otherwise it is a transient and unstable phenomenon. Up to the parameters values adopted in this paper, the extended F(R,ϕ)F(R,\phi)-DGP scenario is closer to the Λ\LambdaCDM scenario than other proposed models. All of these scenarios explain the late-time cosmic speed-up in their normal DGP branches, but the redshift at which transition to the accelerating phase occurs are different: while the Λ\LambdaDGP model transits to the accelerating phase much earlier, the F(R,ϕ)F(R,\phi)-DGP model transits to this phase much later than other scenarios. Also, within the parameter spaces adopted in this paper, the age of the universe in the f(R)f(R)-DGP model is larger than Λ\LambdaCDM, but this age in F(G,ϕ)F(G,\phi)-DGP is smaller than Λ\LambdaCDM.Comment: 37 pages, 6 figures, accepted for publication in Astrophyics and Space Scienc

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom
    • 

    corecore